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SUMMARY

In this paper, a new mathematical framework based on h, p, k and variational consistency (VC) of
the integral forms is utilized to develop a �nite element computational process of two-dimensional
polymer �ows utilizing Oldroyd-B constitutive model. Alternate forms of the choices of dependent
variables in the governing di�erential equations (GDEs) are considered and is concluded that u, v, p,
� choice yielding strong form of the GDEs is meritorious over others. It is shown that: (a) since, the
di�erential operator in the GDEs is non-linear, Galerkin method and Galerkin method with weak form
are variationally inconsistent (VIC). The coe�cient matrices in these processes are non-symmetric and
hence may have partial or completely complex basis and thus the resulting computational processes may
be spurious. (b) Since the VC of the VIC integral forms cannot be restored through any mathematically
justi�able means, the computational processes in these approaches always have possibility of spurious
solutions. (c) Least squares process utilizing GDEs in u, v, p, � (strong form of the GDEs) variables (as
well as others) is variationally consistent. The coe�cient matrices are always symmetric and positive
de�nite and hence always have a real basis and thus naturally yield computational processes that are
free of spurious solutions. (d) The theoretical solution of the GDEs are generally of higher order global
di�erentiability. Numerical simulations of such solutions in which higher order global di�erentiability
characteristics of the theoretical solution are preserved, undoubtedly requires local approximations in
higher order scalar product spaces Hk;p( ��e). (e) LSP with local approximations in Hk;p( ��e) spaces
provide an incomparable mathematical and computational framework in which it is possible to preserve
desired characteristics of the theoretical solution in the computational process. Numerical studies are
presented for fully developed �ow between parallel plates and a lid driven square cavity. M1 �uid
is used in all numerical studies. The range of applicability of the Oldroyd-B model or lack of it is
examined for both model problems for increasing De. A mathematical idealization of the corners where
stationary wall meets the lid is presented and is shown to simulate the real physics when the local
approximations are in higher order spaces and when hd → 0. For both model problems shear rate ˆ̇� is
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examined in the �ow domain to establish validity of the Oldroyd-B constitutive model. Copyright ?
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of viscoelastic �uid �ows using Oldroyd-B constitutive model has been
of interest for years. There has been signi�cant amount of research work published in this area
using numerical schemes based on �nite di�erence methods, �nite volume methods, boundary
element methods and �nite element methods. In the earlier developments, Richards et al. [1]
presented a solution for Oldroyd-B �uid using �nite element technique. In Reference [2], laser
doppler technique is used to study �ow characteristics in the vicinity of a re-entrant corner.
In Reference [3], numerical solutions using �nite di�erence method are obtained for Oldroyd
�uid for streaming �ow past a rigid sphere and spherical bubble. The authors in Reference
[4], use mixed �nite element formulation to simulate �ow through a U-shaped vessel. Jackson
et al. [5] carried out a rheometrical study on a series of Boger �uids. In Reference [6],
mixed element method for the numerical calculation of viscoelastic �uid �ow is used to show
that numerical errors in the evaluation of extra-stress tensor have consequences on the other
�eld variables for the �ow of Maxwell �uid. However, the damage seems to be limited in
Oldroyd-B �uid. For the Oldroyd-B �uid at low shear rates [7], it is shown that the steady
and dynamic �ow properties of the test �uids used are well represented by the constitutive
equations. The studies in Reference [8], exhibit superiority of Oldroyd-B constitutive equa-
tions over Maxwell model in predicting the dynamic and steady shear properties of materials.
Authors in Reference [9], describe boundary element method for �ow through sinusoidally
corrugated tube. In Reference [10], �nite di�erence method is used to obtain converged
solutions with mesh re�nement for high Deborah number. Zheng et al. [11] used bound-
ary element method to study �ow past a sphere in a cylindrical tube. Planar contraction
�ow of a viscoelastic �ow is studied using �nite volume technique in Reference [12]. The
authors in Reference [13], used mixed �nite volume numerical method for viscoelastic
�ow in an undulating tube. In Reference [14], authors present �nite di�erence technique
for �ow in periodically constricted tube. Becker et al. [15] studied the unsteady motion of a
sphere in a viscoelastic �uid using Lagrangian �nite element method. The authors in Refer-
ence [16] used decoupled �nite di�erence scheme with time stepping for entry �ow calcula-
tions of Oldroyd-B �uid. Davis and Devin [17] reported that on corner �ows of Oldroyd-B
�uid Newtonian-like mathematical solutions exist away from the wall. Saramito [18] presents
a �-scheme algorithm and incompressible �nite element method for viscoelastic �uid �ow.
Hulsen et al. [19] simulates viscoelastic �ows using Brownian con�guration �elds. In Ref-
erence [20] a �ux di�erence splitting scheme is used to approximate the resulting set of
equations. Authors in Reference [21] used �nite volume method for �ow through planar
contractions. The authors in Reference [22] reported inertial e�ect on stability of cone and
plate �ow. Oliviera et al. [23] presents collocation �nite volume method for the entry �ow
problem. Wang et al. [24] used higher order upwind �nite volume method for contraction
�ow. We remark that there are many publications up to date than cited here reporting �nite
element methods for polymer �ows, however, the central methodology in the majority of
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these is Galerkin method with weak form with unwinding in some form or the other. Many
such works have already been discussed. In view of the fact that our work demonstrates
Galerkin method with weak form to be variationally inconsistent and problem dependent due
to the use of upwinding methods, citations of more of such works is of little signi�cance
here.
While on the surface it appears that a whole host of computational methods have been

investigated and published using �nite element processes for Oldroyd-B �uid, but upon closer
examination we �nd that the basis behind majority of published formulations is Galerkin
method with weak form. Secondly, local approximations are always of class C0 and in most
cases of low degree. To this date, a satisfactory resolution of failure of numerical simulations
for Oldroyd-B model using �nite element method for increasing Deborah number (De) has
been less than satisfactory. Furthermore, even in the published work where some success has
been achieved, mesh independent solutions are almost non-existent. Whether the failure of the
computational processes is due to less than satisfactory computational processes or limitations
of the constitutive model for increasing �ow rate (and hence Deborah number) is not clear
either.

1.1. Scope of the present work

In the work presented in this paper, the investigations and strategies are multi-fold. First,
we present a short derivation of Oldroyd-B model and then we examine the Oldroyd-B
constitutive model itself and establish if and when the model is capable of producing
satisfactory behaviour that conforms to the physics of �ow. In the development of the
�nite element computational process we utilize a more complete and comprehensive mathe-
matical framework presented recently by Surana et al. [25–27] based on variationally con-
sistent integral forms and h; p and k as independent computational parameters. We show
that this mathematical and associated computational framework can hardly be blamed if and
when the failure of the computational process occurs. Use of this framework is essential
in lifting the balance from the computational process and instead be able to focus on the
anomalies in the constitutive model that may spring up for speci�c combination of computa-
tional and physical parameters resulting in spurious solutions or failure in obtaining numer-
ical solutions. In the present study, we consider two-dimensional steady �ow of Oldroyd-B
�uid. Fully developed �ow between parallel plates and lid driven cavity are used as model
problems.

2. OLDROYD-B CONSTITUTIVE MODEL [28]

This constitutive model is constructed using the convected derivatives of stress and strain
rate. The construction of this model can be viewed in two di�erent ways. First we note that,
since Je�reys model [28] is known to describe linear viscoelastic behaviour quantitatively, it
is used as a basis to generate Oldroyd-B model or convected Je�reys model by replacing the
partial time derivative with the convected time derivative,

�̂+ �1�̂(1) =−�̂0(�̂(1) + �2�̂(2)) (1)
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Another way to view (1) is to note that based on retarded motion expansion [28] rather than
using �̂(1) in the upper convected Maxwell model the next logical term to be added to �̂(1)
would be �̂(2) with a multiplier �2, which would yield (1). In (1), �̂ is the total stress tensor.
In the following we present a discussion of (1) and make many remarks:

(1) This constitutive model contains three constants or parameters: �̂0, the zero shear rate
viscosity, �1, the relaxation time and �2, the retardation time.

(2) If �2 = 0, we obtain upper convected Maxwell model.
(3) If �1 = 0, the model simpli�es to a second order �uid with vanishing second normal

stress coe�cient.
(4) If �1 = �2, the model yields Newtonian �uid behaviour with viscosity �̂0.
(5) Discussion presented in Reference [29] regarding upper convected Maxwell model is

important and signi�cant in evaluating what can be expected from the Oldroyd-B model
in 2-D �ows. Since Oldroyd-B model is derived from Maxwell model by incorporating
�̂0�2�̂(2) term on the right side of the Maxwell model. �2 provides additional mecha-
nism by which this model can be forced to yield �uid behaviours either closer to or
same as Newtonian or closer to or same as Maxwell. The additional physics in the
models essentially alters viscous participation, which obviously e�ects � (and thereby
elastic response) through constitutive equations. Nonetheless, the basic mechanism of
elasticity in this model is exactly same as that in upper convected Maxwell model
(UCMM).

(6) Just like UCMM, Oldroyd-B model also contains one constant �1 through which
elasticity is incorporated in the model. This may be insu�cient for two-dimensional
elasticity requiring atleast two elastic constants. In terms of the limitations of the
model in simulating two-dimensional elastic response,some discussions presented in
Reference [29] for UCMM are also applicable to Oldroyd-B model as well.

(7) When simulating fully two-dimensional �ows in which all components of the strain
rate tensor are non-zero, physically meaningful resolution of the elastic behaviour may
require a mechanism which contains atleast two independent elastic constants which
is absent in Oldroyd-B model. Use of Oldroyd-B model for such �ows: (i) if able
to produce results, the resulting behaviour may be erroneous, the extent of which is
application dependent as well as dependent on computational and physical parameters;
(ii) or may cease to produce results altogether.

(8) Oldroyd-B model like UCMM is meant to simulate behaviour of dilute polymer
solutions in which the behaviour is solvent dominated, hence we expect the elastic
behaviour to remain less dominant than viscous for all choices of the physical para-
meters.

(9) Elongation viscosity, �rst and second normal stress di�erence versus �̇ in simulations
and experiments and many other on going issues and investigations related to Oldroyd-
B model as well and their validity are issues of interest and concerns in determining its
range of applications and choices of physical parameters for which the model performs
satisfactorily.

However, in the present work we take Oldroyd-B model in its present form with the under-
standing of the issues and limitations presented above and concentrate on the development
of a �nite element computational process that may possibly allow us to investigate when and
why h, p, k independent solutions are possible in the present computational framework.
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2.1. Constitutive equations of the Oldroyd-B model

In (1), �̂(1), �̂(1) = ˆ̇� are the �rst convected derivatives of the stress and strain rate tensor
and �̂(2) is the second convected strain rate tensor, de�ned by

�̂(1) =
D�̂
Dt̂

− ((∇̂Û)T:�̂+ �̂:(∇̂Û)) (2)

or

�̂(1) =
@�̂
@t̂
+ (Û:∇̂)�̂ − ((∇̂Û)T:�̂+ �̂:(∇̂Û)) (3)

and

�̂(2) =
D�̂(1)
Dt̂

− ((∇̂Û)T:�̂(1) + �̂(1):(∇̂Û)) (4)

or

�̂(2) =
@�̂(1)
@t̂

+ (Û:∇̂)�̂(1) − ((∇̂Û)T:�̂(1) + �̂(1):(∇̂Û)) (5)

Substituting these into (1) and noting that for steady motion we have @�̂=@t̂=0 and
@�̂(1)=@t̂=0, we obtain the following for Oldroyd-B constitutive equations:

�̂+ �1((Û:∇̂)�̂ − (∇̂Û)T:�̂ − �̂:(∇̂Û))

=−�̂0�̂(1) − �̂0�2((Û:∇̂)�̂(1) − (∇̂Û)T:�̂(1) − �̂(1):(∇̂Û)) (6)

2.2. Elastic-viscous stress decomposition

It has been argued [30] that an alternative form of the constitutive equations (6) obtained
using elastic viscous stress decomposition is meritorious over (6) in numerical computations.
This form of (6) can be obtained by assuming that �̂= �̂e+ �̂v in which �e is the elastic stress
tensor and �v is the viscous stress tensor. Furthermore, �̂v= − �̂0(∇̂Û+(∇̂Û)T). Substituting
for � and �v in (6), we obtain the following constitutive equations in terms of �e, u and v:

�̂e + �1((Û:∇̂)�̂e − (∇̂Û)T:�̂e − �̂e:(∇̂Û))

− (�1 − �2)�̂0((Û:∇̂)�̂(1) − (∇̂Û)T:�̂(1) − �̂(1):(∇̂Û))=0 (7)

�̂v=−�̂0(∇̂Û+ (∇̂Û)T) (8)

3. GOVERNING DIFFERENTIAL EQUATIONS FOR 2-D STEADY POLYMER
FLOW UTILIZING OLDROYD-B MODEL

For two-dimensional steady �ow of Oldroyd-B �uid the governing di�erential equations consist
of continuity, x and y momentum and Oldroyd-B constitutive equations (considering (6)),
relating total stresses, strain rate tensor and �uid properties.
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3.1. Governing di�erential equations in velocities, pressure and total stresses

∇̂:Û=0 (9)

�̂(Û:∇̂)Û+ ∇̂:p̂+ ∇̂:�̂=0 (10)

�̂+ �1((Û:∇̂)�̂ − (∇̂Û)T:�̂ − �̂:(∇̂Û)) + �̂0�̂(1)

+ �2�̂0((Û:∇̂)�̂(1) − (∇̂Û)T:�̂(1) − �̂(1):(∇̂Û))=0 ∀x̂; ŷ∈�x̂;ŷ (11)

Dimensionless form of these equations can be obtained by choosing following dimensionless
variables: x= x̂=L0, y= ŷ=L0, U= Û=U0, �= �̂=�0, p= p̂=�0, �= �̂=�0, �= �̂0=�0 where L0, U0,
�0, �0 and �0 are reference length, velocity, density, viscosity and stress, respectively. If we
choose �0 = �̂, then �=1 and we have the following:

∇:U= 0 (12)

f1(U:∇)U+∇:p+∇:�=0 (13)

�+De1((U:∇)� − (�:∇U)T − (�:∇U)) + �f2(∇U+ (∇U)T)

+De2f2((U:∇)�(1) − (∇U)T:�(1) − �(1):(∇U))=0 (14)

where �(1) = (∇U + (∇U)T) and f1 =�0U02=�0, f2 = �0U0=(�0L0), De1 = �1U0=L0 (Deborah
number), De2 = �2U0=L0. If we choose �0 =�0U 2

0 (reference stress based on characteristic
kinetic energy), then f1 = 1; f2 = 1=Re and if �0 = �0U0=L0 (reference stress based on charac-
teristic viscous stress), then f1 =Re; f2 = 1, where Re=�0U0L0=�0 (Reynolds number).

3.2. GDEs in terms of velocities, pressure and elastic stresses

In this set of GDEs, we have continuity, momentum equations in which �̂= �̂e + �̂v with
�̂v= − �̂0(∇̂:Û+ (∇̂:Û)T) is substituted in the momentum equations. The resulting equations
are given in the following:

∇̂:Û=0 (15)

�̂(Û:∇̂)Û+ ∇̂p̂+ ∇̂:�̂e − �̂0∇̂:(∇̂:Û+ (∇̂:Û)T)=0 (16)

�̂e + �1((Û:∇̂)�̂e − (∇̂Û):�̂e − �̂e:(∇̂Û))

− (�1 − �2)�̂0((Û:∇̂)�̂(1) − (∇̂:Û)T:�̂(1) − �̂(1):(∇̂Û))=0 (17)

These equations can be non-dimensionalized using the same approach as in Section 3.1.
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Remarks

(1) GDEs in (12)–(14) or (15)–(17) are a system of non-linear partial di�erential equations
in u, v, p, � or �e in which only �rst-order derivatives of p, � or �e appear while the
equations contain upto second-order derivatives of u and v w.r.t. x and y.

(2) If we assume that the theoretical solutions of (12)–(14) or (15)–(17) (though may not
be obtainable) are analytic, i.e. u, v, p and � or �e are analytic, then u, v, p and � or
�e are polynomial of in�nite degree in x and y. Such solutions are of class C∞(�xy)
in which derivatives of all orders exist, are continuous and are square integrable (due
to analytic nature of solution). This feature of the theoretical solution is signi�cant
and permits us to design a precise mathematical and computational framework to
address their numerical simulations. Numerical simulations of singular BVP have also
been addressed by Surana et al. [31] using the same mathematical and computational
framework as utilized here.

4. MATHEMATICAL FRAMEWORK AND APPROXIMATION SPACES
Hk( ��Txy) AND H

k;p( ��exy)

The mathematical and computational framework based on h; p; k; the characteristic length,
degree of local approximation and the order of the approximation space as independent com-
putational parameters and variationally consistent integral forms [25–27] is utilized for numer-
ical simulation of two-dimensional �ows of Oldroyd-B �uids. This framework permits higher
order global di�erentiability approximations necessitated by the theoretical solutions when they
are analytic. The order of the space k controls the global di�erentiability of approximations.
Let ’ be the dependent variable and let ��Txy=

⋃
e
��exy be a discretization of ��xy containing

‘M ’ subdomains in which ��exy is a subdomain (element) ‘e’. Let ’
e
h be local approximation

of ’ over ��exy, then ’h, the global approximation of ’ over ��
T
xy is given by

’h=
⋃
e
’eh

We de�ne approximation spaces or scalar product spaces for global approximation ’h and
local approximation ’eh for a dependent variable ’. Let H

k( ��Txy) be scalar product space of
order k containing ’h of class ck−1( ��Txy). Since ’h=

⋃
e ’

e
h, we de�ne scalar product space

Hk;p( ��exy) to be the approximation space for the local approximations ’
e
h over ��

e in which
k is the order of the space and p is the degree of local approximations. This local approx-
imation space contains functions of class ck−1( ��exy) and degree p. In the present work, we
use algebraic monomials or polynomials for constructing local approximations functions [32].

5. GALERKIN METHOD AND GALERKIN METHOD WITH WEAK FORM

Since the di�erential operator in (12)–(14) or (15)–(17) is non-linear both Galerkin method
and Galerkin method with weak form are variationally inconsistent, i.e. the resulting �nite
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element processes yield non-symmetric coe�cient matrices which may have partial or com-
pletely complex basis and hence the computational processes may produce spurious solutions
or may even totally degenerate. A signi�cant point to note here is that variational consistency
of these integral forms resulting from Galerkin or Galerkin method with weak form cannot
be restored through any mathematically justi�able means and hence the resulting numeri-
cal processes may have the possibility of producing spurious solutions or may even totally
degenerate [25–27, 33, 34]. Hence, these methods cannot be viewed as viable and reliable
computational strategies.

6. LEAST SQUARES PROCESSES IN �xy (NO DISCRETIZATION)

In contrast to Galerkin method or Galerkin method with weak form, least square processes
are variationally consistent for non-linear di�erential operators and hence yield coe�cient
matrices that are symmetric and positive de�nite and that always have a real basis and thus
are naturally free of spuriousness [33, 34]. First, we present details of the least squares process
in �xy (no discretization) and then least square element processes in Hk;p( ��e) spaces followed
by a discussion of minimally conforming spaces for both form of the governing di�erential
equations, i.e. (12)–(14) and (15)–(17) and reasons for the need for higher order spaces than
minimally conforming. Let

[’h]T = [uh; vh; ph; (�xx)h; (�xy)h; (�yy)h] (18)

or

[’h]T = [uh; vh; ph; (�exx)h; (�
e
xy)h; (�

e
yy)h] (19)

be the global approximations of velocities, pressure and stresses for (12)–(14) and (15)–(17).
For subsequent details, consider GDEs (12)–(14). Upon substituting these approximations in
the governing di�erential equations (12)–(14) we obtain residual equations for �xy,

E1 =
@uh
@x

+
@vh
@y

(20)

E2 =f1

(
uh
@uh
@x

+ vh
@uh
@y

)
+
@ph
@x

+
@(�xx)h
@x

+
@(�xy)h
@y

(21)

E3 =f1

(
uh
@vh
@x
+ vh

@vh
@y

)
+
@ph
@y

+
@(�xy)h
@x

+
@(�yy)h
@y

(22)

E4 = (�xx)h +De1

(
uh
@(�xx)h
@x

+ vh
@(�xx)h
@y

− 2@uh
@x
(�xx)h − 2@uh

@y
(�xy)h

)
+ 2�f2

@uh
@x

+De2f2

(
2uh
@2uh
@x2

+ 2vh
@2uh
@y@x

− 4
(
@uh
@x

)2
− 2@uh

@y

(
@uh
@y

+
@vh
@x

))
(23)
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E5 = (�xy)h +De1

(
uh
@(�xy)h
@x

+ vh
@(�xy)h
@y

− @vh
@x
(�xx)h − @uh

@y
(�yy)h

)

−De1
((

@uh
@x

+
@vh
@y

)
(�xy)h

)
+ �f2

(
@uh
@y

+
@vh
@x

)

−De2f2
(
uh

(
@2uh
@y@x

+
@2vh
@x2

)
+ vh

(
@2uh
@y2

+
@2vh
@y@x

)
− 2@uh

@y
@vh
@y

)

−De2f2
(
2
@uh
@x
@vh
@x
+
(
@uh
@x

+
@vh
@y

)(
@uh
@y

+
@vh
@x

))
(24)

E6 = (�yy)h +De1

(
uh
@(�yy)h
@x

+ vh
@(�yy)h
@y

− 2@vh
@y
(�yy)h − 2@vh

@x
(�xy)h

)
+ 2�f2

@vh
@y

+De2f2

(
2uh

@2vh
@y@x

+ 2vh
@2vh
@y2

− 2@vh
@x

(
@uh
@y

+
@vh
@x

)
− 4

(
@vh
@y

)2)
(25)

In least squares process, we begin with the construction of a functional I [35–37] using
residual equations (20)–(25),

(i) Existence of functional I :

I(’h)=
6∑
i=1
(Ei; Ei)=

6∑
i=1

∫
�xy
(Ei)

2 d� (26)

Clearly I describes a convex manifold and furthermore, the convexity of the manifold
is independent of the di�erential operator.

(ii) Necessary condition: Necessary condition is obtained by setting �I(’h)=0 (provided
I(’h) is di�erentiable in ’h),

�I(’h)=
6∑
i=1
(Ei; �Ei)= {g(’h)}=0 (27)

(iii) Su�cient conditions (extremum principle): Second variation of I(’h), i.e. �2I(’h)
(provided I(’h) is di�erentiable twice in ’h) provides su�cient conditions or ex-
tremum principle. Based on References [25–27], we can write,

�2I(’h) ∼=
6∑
i=1
(�Ei; �Ei)¿0 (28)

(i)–(iii) clearly establish that the least squares process is variationally consistent.
(iv) We now must �nd a solution ’h that satis�es (27). However, since {g(’h)} is a non-

linear function of ’h due to the fact that the GDEs are non-linear, hence, we must
�nd ’h iteratively. Following Surana et al. [25–27], if ’0h is a starting or assumed
solution, then {g(’h)} can be expanded in Taylor series about ’0h, and limiting to
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�rst-order approximation (Newton’s linear method) we obtain the following:

’h=’0h + ��’h (29)

�’h= − [�2I(’h)]−1’0h {g(’h)}’0h (30)

in which � is a constant generally between 0 and 2 determined such that I(’h)6I(’0h).
This procedure is termed Newton’s method with line search. we already have expression for
Ei; i=1; 2; : : : ; 6 in (20)–(25) and approximation ’h involving unknown constant and basis
functions. All that we need now are expressions for �Ei; i=1; 2; : : : ; 6, which can be easily
obtained using Ei; i=1; 2; : : : ; 6 and di�erentiating them with respect to the constants used in
the approximation ’h.

Remarks

(1) First, we note that the coe�cient matrix in �’h calculation is given by �2I(’h) in
(28). Since �2I(’h)¿0, for any choice of computational and physical parameters, the
coe�cient matrix is always positive de�nite and hence always has a real basis and
thus the resulting computational process will always be pollution free.

(2) Equation (28) assures that a solution ’h minimizes I(’h) in (26).
(3) Minima of I(’h) is zero, which is only possible when Ei ≡ 0 in �xy in the point-wise

sense, i.e. a minima of I(’h) in (i)–(iv) also satis�es governing di�erential equations
in the point-wise sense and hence is a solution of the boundary value problem also.

(4) Since approximation ’h is global over �xy (no discretization), there are no issues of
global di�erentiability of ’h.

7. LEAST SQUARES FINITE ELEMENT PROCESSES

Let ��Txy=
⋃M
e
��exy be a discretization of ��xy containing ‘M ’ subdomains in which ��exy is a

subdomain (element) ‘e’ and let ’eh be local approximation of ’ over ��
e
xy, then ’h, global

approximation of ’ over ��Txy is given by

’h=
M⋃
e
’eh (31)

The details presented in Section 6 for least squares processes over �xy can be recast for the
discretization ��Txy.

(i) Existence of functional I(’h) for ��Txy:

I(’h)=
M∑
e=1

6∑
i=1
(Eei ; E

e
i )=

M∑
e=1

6∑
i=1

∫
�exy

(Ei)
2 d� (32)

in which Eei are the element residual quantities obtained from (12)–(14) or (15)–(17)
by substituting ’eh.
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(ii) Necessary condition: These are obtained by setting �I(’h)=0, provided I(’h) is dif-
ferentiable in ’h,

�I(’h)=
M∑
e=1

6∑
i=1
(Eei ; �E

e
i )=

M∑
e=1

{ge(’eh)}= {g(’h)}=0 (33)

(iii) Su�cient conditions (extremum principle): If I(’h) is di�erentiable twice in ’h, then
�2I(’h) provides the extremum principle, and based on Surana et al. [25–27] we have,

�2I(’h) ∼=
M∑
e=1

6∑
i=1
(�Eei ; �E

e
i )=

M∑
e=1

6∑
i=1
�2I e(’eh) (34)

(iv) Newtons method with line search becomes,

’h=’oh + ��’h (35)

�’h= − [�2I(’h)]−1’0h {g(’h)}’0h (36)

Remarks

(1) Variational consistency of this least squares �nite element process inherently stems from
the variational consistency of least squares process over �xy presented in Section 6.
Hence, the remarks presented in Section 6 hold here as well.

(2) The nature of local approximation ’eh is crucial, so that we can establish the Hilbert
spaces containing basis functions for local approximations ’eh.

7.1. Local approximation spaces for least squares �nite element process for GDEs
(12)–(14) or (15)–(17)

In this section, we consider local approximation ’eh for governing di�erential equations
(12)–(14). These are a set of non-linear partial di�erential equations in u, v, p and � in
which only �rst-order derivatives of p and � appear but the highest order of derivatives of u
and v is two. For the integrands in the LSP to be continuous the approximations ph and �h
must atleast be of class C1( ��Txy) and uh and vh must be atleast of class C

2( ��Txy) and since
the global approximation ’h is given by (31), it follows that in ’eh, p

e
h and (�

e
h)
e must also

be of class C1( ��exy) and u
e
h, v

e
h must be of class C

2( ��exy), i.e. H
2;p( ��exy) is the minimally

conforming spaces for peh and (�h)
e whereas H 3;p( ��exy) is the minimally conforming spaces

for ueh and v
e
h. The need for higher order spaces is rather obvious if ’h is to approach ’ in

terms of global di�erentiability in the point-wise sense. We remark that pe and (�h)
e of class

C2( ��exy) are admissible in the integrands too. Thus, it perhaps may be convenient to consider
H 3;p( ��exy) as the minimally conforming space for ’

e
h instead of di�erent order spaces for p

e
h,

(�h)
e and ueh, v

e
h. Hence, we have the following:

’h ∈Hk( ��Txy); k¿3 (37)

’eh ∈Hk;p( ��Txy); k¿3 (38)

In which k=3 is the minimally conforming space for all variables. Same arguments hold for
GDEs in u, v, p and �e variables.
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7.2. Local approximation ’eh over ( ��
e
xy)

Hence for both forms of the GDEs discussed here, we can write the following:

’eh ∈Vh( ��exy)=Hk;p( ��exy) (39)

In which we de�ne,

Vh( ��exy)=H
k;p( ��exy)= {w : w| ��exy ∈Ck−1; w| ��exy ∈Pp ∀ ��exy ∈ ��Txy} (40)

’eh ∈Vh( ��exy) can be interpreted using,

’eh ∈ [Nk−1;p(x; y)]{�e} ∀(x; y)∈ ��exy (41)

In which {�e} are the nodal degrees of freedom for all variables for a subdomain ��exy. If the
basis functions Nk−1;p(x; y)∈Hk;p( ��exy) then obviously ’

e
h ∈Hk;p( ��exy).

8. NUMERICAL STUDIES

In this section, we represent a number of numerical studies using: (i) fully developed �ow
between parallel plates and (ii) a lid driven square cavity as model problems. Numerical
studies are designed to demonstrate many features of the approach presented in this paper
some of which are outlined in the following:

(1) For a given order of approximation space, i.e. k and a �xed discretization (h), it
is possible to obtain a converging sequence of solutions, that is with progressively
increasing p-levels, the sequence of solutions has a limit point.

(2) The process in (1) is carried out for progressively increasing order of the approximation
space and thus obtaining a sequence of limit points that is shown to converge with
increasing k. Hence, we obtain a limit point of the sequence of limit points that is
independent of p and k.

(3) The process in (1) and (2) is repeated for as many progressively re�ned uniform (or
quasi-uniform) discretizations as needed until the limit points in (2) for two successive
discretizations are in close agreement and thus yielding a solution that is independent
of h, p and k.

(4) Oldroyd-B model is a constitutive model designed for dilute polymer solutions with
some elasticity but essentially solvent, i.e. viscous dominated behaviour. This model
like UCMM has only one elastic parameter �1, the relaxation time. The retardation time,
�2 allows one to tune the model to either closer to Newtonian or Maxwell or any place
in between. It is signi�cant to keep in mind that the mechanism of elasticity in UCMM
and Oldroyd-B model is identical, i.e. Oldroyd-B model like UCMM fails to incorporate
the correct physics of two-dimensional elasticity which requires at least a minimum
of two elastic constants. Another signi�cant point to note is that from the published
experimental work dealing with dilute polymer solutions [38], we note that (Figure 1)
Oldroyd-B model has an upper limit of ˆ̇�=3 (for M1 �uid used here) beyond which
the �rst normal stress di�erence versus ˆ̇� predicted by the model begins to deviate
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Figure 1. First normal stress di�erence and storage modulus for the polyisobutylene-polybutene
solution used in the �ow visualization experiments—comparison between experiment and prediction

with the Maxwell and Oldroyd B model [38].

signi�cantly from the experimental data. This does not mean that for ˆ̇� beyond 3 one
would observe the failure of numerical simulations. All it says is that beyond ˆ̇�=3,
the numerical simulations are no longer in agreement with the experiments.

8.1. Fully developed �ow between parallel plates

For fully developed �ow between parallel plates the GDEs have a theoretical solution given
by

�pxy= − np
(np + ns)

(
@p
@x

)
y

�sxy= − ns
(np + ns)

(
@p
@x

)
y

�exx= − 2De�p
(�p + �s)2

(
@p
@x

)2
y2
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Figure 2. Schematic of computational domain for fully developed �ow between parallel plates.

Figure 2 shows a schematic of the computational domain and the boundary conditions. We
choose M1 �uid [39] with the following properties: �̂=868 kg=m3, �̂s=2:7 Pa s, �̂p=0:3 Pa s,
�1 = 0:1 s; �̂= �̂s + �̂p=3Pa s.
If we choose reference viscosity �0 = �̂, then �=1 and �s= �̂s=�0 = 0:9, �p= �̂p=�0 = 0:1

and the dimensionless parameters, Reynolds number and Deborah number, are given by
Re=(�0L0=�0)u0 = 0:918633u0, De=(�1=L0)u0 = 31:4960629u0.
A �ve element uniform discretizations is considered in the y-direction for all numerical

studies shown in Figure 4. Flow rates are uniformly increased by choosing u0 = 0:1, 1.0, 5.0
and 10.0 corresponding to De=3:1496, 31.496, 157.48 and 314.96, respectively. Numerical
studies are presented for �2 = �1=2=0:05. The purpose of presenting numerical studies for
higher De for which the strain rates are well beyond the range of validity of Oldroyd-B model
is to demonstrate: (1) that for highly specialized �ows such as this model problem in which the
�ow in unidirectional, the Oldroyd-B model (which is primarily 1-D model) may not result in
the failure of the computations; (2) that the computational process is quite robust regardless
of the unrealistic behaviour of Oldroyd-B model. The purpose of these numerical studies
is not to validate the computational process even though one could. In the computational
approach presented here when least squares functional I approaches zero, we indeed have a
numerical solution that satis�es the GDE in the point-wise sense in the whole domain. This
is the major strength and signi�cant feature of the computational approach presented here.
For each �ow rate solutions of class C1 are computed by progressively increasing p-levels
(p	=p�=p) uniformly for all elements of the discretization until the numerical solutions
from two successive p-levels do not show any appreciable change. Figure 4 shows graphs of
û, �̂exx, �̂

v
xy and ˆ̇� versus y at convergence (p=5). In the following we make some remarks
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Figure 3. Equilibrium of an elementary �uid volume for fully developed �ow between parallel plates.

and discuss some important aspects of the �ow physics and the constitutive model behaviour.

(1) From the results shown in Figure 4 we observe that numerical computations are suc-
cessful well beyond the range of validity of ˆ̇�. Results are presented for De as high
as 314.96 (and beyond, not shown) but the �rst normal stress di�erence is not in
agreement with experiments beyond ˆ̇�=3.

(2) As discussed earlier, the Oldroyd-B model lacks correct physics of two-dimensional
elasticity, i.e. the model is incapable of predicting the change in the direction normal
to the applied stress or disturbance. This is clearly evident by �̂eyy=0 even though
�̂exx �=0.

(3) One might wonder that inspite of such basic shortcoming of the correct physics of
elasticity (as described in (2)), the Oldroyd-B model produces converged solutions for
this simple �ow situation. The answer to this question is rather simple if one considers
the equilibrium of an elementary �uid volume. In this case, the only non-zero stresses
generated from the numerical solution of the GDEs are: �̂vxy and �̂

e
xx, which when acting

on an elementary �uid volume maintain equilibrium of the �uid volume regardless of
the �ow rate and hence for any value of ˆ̇� and De (Figure 3). Since the model has
no mechanism for �̂eyy it produces �̂

e
yy=0 which in this case can be tolerated without

disturbing the equilibrium of the �uid volume and hence the reason for success of the
numerical simulations for any value of ˆ̇�.

(4) It is well known that �̂eyy=0 is non-physical and hence the results from the simulations
for all De �=0 are non-physical. However, one could perhaps rationalize that at very
low ˆ̇�, �̂eyy is small compared to �̂

e
xx and hence perhaps the results for �rst normal

stress di�erence are not in signi�cant error and thus could be tolerated and hence the
reason for accepting Oldroyd-B model results for low values of ˆ̇�. But we know that
�̂eyy �=0 if De �=0 and hence Oldroyd-B model results for dilute polymer solutions are
always non-physical and are in error.
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Figure 4. Fully developed �ow: solutions of class C1; p=5; �2 = 0:05: (a) velocity û versus y; (b) shear
stress �̂vxy versus y; (c) normal stress �̂exx versus y; and (d) strain rate ˆ̇� versus y.
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(5) Lastly, we want to summarize that for this model problem numerical simulations are:
(i) possible for any ˆ̇�; (ii) possible because �̂eyy=0 does not disturb the equilibrium
of the elementary �uid volume; (iii) are erroneous for all values of De �=0 due to the
fact that based on the physics of two-dimensional elasticity �̂eyy �=0 for all De �=0 but
the model produces �̂eyy=0 for all De �=0.

(6) As additional information, Figure 5 shows graphs of �rst normal stress di�erence
versus ˆ̇� at y=0:25, 0.5, 0.75 and 1.0.

(7) The studies reported here are for �2 = 0:05 only. Similar behaviour is observed for
0¡�2¡�1.

8.2. Lid driven square cavity

In this study we consider a lid driven square cavity as a model problem. Figure 6 shows
a schematic of the cavity, idealization of the cavity for computations and four di�erent dis-
cretizations:

Mesh M1: 36 element discretization (hd=0:1)
Mesh M2: 100 element discretization (hd=0:1)
Mesh M3: 49 element discretization (hd=0:05)
Mesh M4: 400 element discretization (hd=0:05)

We note that the points A and B where the stationary cavity walls meet the moving lid
represent locations where description of velocity u is non-unique. The mathematical ideal-
ization proposed in Figure 6(b), in which u changes from zero at points A and B to one
over a length hd in a continuous and di�erentiable manner is designed to approach the true
physics at A and B in the limiting process. When the distribution of u over hd is of class
Ck , then in the limit hd → 0 and k → ∞ we indeed recover the true physics at points A
and B, hence the motivation for the idealization shown in Figure 6(b). This representation
of the velocity �eld along the lid makes u analytic. This is helpful in computations as the
generalized solutions of non-linear singular BVP may be non-unique. It is demonstrated that
with the choices of hd used here the local behaviour at points A and B remains isolated in a
very small neighbourhood around points A and B without disturbing rest of the �ow �eld in
the cavity. The singular behaviour at points A and B can only be approached as a limiting
case as shown here.
We make remarks regarding the four meshes (M1, M2, M3 and M4). In mesh M1, a quasi-

uniform mesh, hd=0:1. Mesh M2 also has hd=0:1 but has much more re�ned grid compared
to mesh M1. These meshes would serve to show the mesh independence of the solution for
hd=0:1. Meshes M3 and M4 with hd=0:05 are designed similar to meshes M1 and M2 and
would serve to show the mesh independence of the solution for hd=0:05. We consider M1
�uid [38] with the following properties:

�̂=868 kg=m3; �̂s=2:7 Pa s; �̂p=0:3 Pa s; �1 = 0:1 s; �̂= �̂s + �̂p=3Pa s; �2 = 0:5

If we choose reference viscosity �0 = �̂, then �=1 and �s= �̂s=�0 = 0:9; �p= �̂p=�0 = 0:1 and
the dimensionless parameters, Reynolds number and Deborah number are given by
Re=(�0L0=�0)u0, De=(�1=L0)u0. Numerical simulations are considered for: De=0:2, u0 = 0:2,
lid velocity ûl=0:2m=s and De=0:4, u0 = 0:4, lid velocity ûl=0:4m=s for all four meshes
described above. We consider �2 = 0:05 for all numerical studies unless stated otherwise.
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Figure 5. Fully developed �ow: solutions of class c1, p=5, �rst normal stress di�erence (�̂exx−�̂eyy)
versus ˆ̇�, �2 = 0:05: (a) �rst normal stress di�erence versus ˆ̇� at y=0:25; (b) �rst normal stress
di�erence versus ˆ̇� at y=0:5; (c) �rst normal stress di�erence versus ˆ̇� at y=0:75; and (d) �rst

normal stress di�erence versus ˆ̇� at y=1:0.
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Figure 6. Schematic and discretizations for lid driven cavity: (a) schematic of lid driven cavity; (b)
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Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:119–162



138 K. S. SURANA ET AL.

8.2.1. p-convergence of the solution of class Ck , k= 1,2,3. Mesh M1 (36 Ele.), De= 0.2,
hd= 0.1, �2 = 0.05. We consider a quasi-uniform mesh consisting of 36 elements with hd=0:1
and De=0:2. First, we consider solutions of class C1, i.e. local approximation in H 2;p( ��e)
space. p-levels are increased uniformly from p=5 to 9 for each element of the discretization
until converged solutions are obtained. A comparison of the results at x=0:5; y=0:5 and
y=0:95 shows that results for p=7 and 9 are in good agreement (not shown for brevity)
indicating that further increase in the p levels will not result in any appreciable change.
Hence, results at p=9 could be treated as a limit point for the solution of class C1. Similar
studies were conducted for solutions of class C2 and C3 to obtain limit points in H 3;p( ��e) and
H 4;p( ��e) spaces. Limit points for the solution of classes C2 and C3 are in very close agreement
everywhere (results not shown) in the cavity including the very close neighbourhood of points
A and B. Thus, the limit point for the solution of class C3 can be treated as a solution that
is independent of p and k.

8.2.2. h, p, k independence of the solutions for De= 0.2, hd= 0.1 and �2 = 0.05. In Sec-
tion 8.2.1, limit points in spaces Hk;p( ��e), k=2, 3 and 4 were obtained and the fact that the
limit points for k=3 and 4 are in close agreement shows that limit point in space H 4;p( ��e) is
infact a solution that is independent of p and k. The studies in Section 8.2.1 were conducted
for a 36 element quasi-uniform mesh with hd=0:1. Similar studies were conducted for the 100
element discretization (Mesh M2) also with hd=0:1 to obtain a solution for this mesh that is
independent of p and k (i.e. limit point). Comparison of the p and k independent solutions
for the two meshes with hd=0:1 is shown in Figures 7 and 8. Exceptionally good agreement
between these shows mesh independence of the solution reported in Figures 7 and 8, and
since these solutions are already independent of p and k, these solutions in Figures 7 and 8
are independent of h, p and k. We remark that in these solutions, the physics at the corners
A and B is idealized by the velocity distribution shown in Figure 6(b) with hd=0.1 and
hence these h, p, k independent solutions are for this speci�c value of hd=0:1.

8.2.3. h, p, k independent solutions for De= 0.2, hd= 0.05 and �2 = 0.05. In this study we
utilize 49 and 400 element meshes with hd=0:05 to obtain h, p, k independent solutions by
�rst obtaining p, k independent solutions for the two meshes and then by comparing them
to establish mesh independence of the solutions. Figures 9 and 10 show a comparison of
the h, p, k independent limit points for the two meshes. A good agreement between the
two indicates mesh independence of these solutions and hence h, p, k independence of the
solutions.

8.2.4. Comparisons of the limit points for hd= 0.05 and 0.1, De= 0.2, �2 = 0.05. Figures 11
and 12 show comparison of the h, p, k independent solutions for hd=0:05 and 0:1. From
these results we observe that except in the immediate vicinity of corner A and B, in the rest
of the cavity, the two solutions compare very well. Validity of the results in the vicinity of
A and B will be discussed in the subsequent section.

8.2.5. Comparisons of the limit points for De= 0.4, �2 = 0.05. Studies similar to those
reported for De=0:2 were also conducted for De=0:4 using meshes M1–M4. For De=0:4
to obtain limit points for hd=0:1 and 0:05. A comparison of these limit points is shown in
Figures 13 and 14. We observe behaviour similar to De=0:2, i.e. except in the
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Figure 7. Comparision of p, k independent limit points for Mesh M1 and Mesh M2 at y=0:95: C3,
p=9, hd=0:1, u0 = 0:2, De=0:2, �2 = 0:05: (a) velocity u versus x; (b) shear stress �vxy versus x;

(c) normal stress �vxx versus x; (d) normal stress �vyy versus x.
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Figure 8. Comparision of p, k independent limit points for Mesh M1 and Mesh M2 at y=0:95:
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versus x; (c) normal stress �exx versus x; and (d) normal stress �eyy versus x.
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Figure 9. Comparision of p, k independent limit points for Mesh M3 and Mesh M4 at y=0:95:
C3, p=9, hd=0:05, u0 = 0:2, De=0:2, �2 = 0:05: (a) velocity u versus x; (b) shear stress �vxy

versus x; (c) normal stress �vxx versus x; and (d) normal stress �vyy versus x.
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Figure 10. Comparision of p, k independent limit points for Mesh M3 and Mesh M4 at y=0:95:
C3, p=9, hd=0:05, u0 = 0:2, De=0:2, �2 = 0:05: (a) velocity v versus x; (b) shear stress �exy

versus x; (c) normal stress �exx versus x; and (d) normal stress �eyy versus x.
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Figure 11. Comparision of h, p, k independent solutions of class C3, p=9, for hd=0:1 and
hd=0:05 at y=0:95: u0 = 0:2, De=0:2, �2 = 0:05: (a) velocity u versus x; (b) shear stress �vxy

versus x; (c) normal stress �vxx versus x; and (d) normal stress �vyy versus x.
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Figure 12. Comparision of h, p, k independent solutions of class C3, p=9, for hd=0:1 and
hd=0:05 at y=0:95: u0 = 0:2, De=0:2, �2 = 0:05: (a) velocity v versus x; (b) shear stress �exy

versus x; (c) normal stress �exx versus x; and (d) normal stress �eyy versus x.
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Figure 13. Comparision of h, p, k independent solutions of class C2, p=7, for hd=0:1 and
hd=0:05 at y=0:95: u0 = 0:4, De=0:4, �2 = 0:05: (a) velocity u versus x; (b) shear stress �vxy

versus x; (c) normal stress �vxx versus x; and (d) normal stress �vyy versus x.
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Figure 14. Comparision of h, p, k independent solutions of class C2, p=7, for hd=0:1 and
hd=0:05 at y=0:95: u0 = 0:4, De=0:4, �2 = 0:05: (a) velocity v versus x; (b) shear stress �exy

versus x; (c) normal stress �exx versus x; and (d) normal stress �eyy versus x.
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Figure 15. p-convergence of least square functional in higher order spaces.

immediate neighbourhood of the points A and B, the agreement between the two limit points
for hd=0:05 and 0:1 is exceptionally good.

8.2.6. p-convergence of the least squares functional I in Hk;p( ��e) spaces. Figure 15 shows
graphs of I versus dof for meshes M1 (36 elements) and M3 (49 elements) for solutions of
class Ck ; k=1, 2 and 3. We observe increased convergence rate with the increasing order of
the space and lower values of I in the higher order spaces (for a given dof). Tables I—IV
document various details of the studies presented for the meshes.

8.2.7. Converged solutions (h; p; k independent) for di�erent values of �2. Solutions of class
C3 for 400 element mesh at p=9 (representing h; p; k independent solutions) are shown in
Figures 16–19 for �2 = 0:0, 0.03, 0.06 and 0:1. We note that �2 = 0 corresponds to Maxwell
�uid and �2 = �1 corresponds to Newtonian �uid. First, we note that no particular di�culty
is encountered for di�erent values of �2. Secondly, the ability of the Oldroyd-B model to
control the magnitude of stresses based on �2 is quite clear. By choosing appropriate value
of �2, the model can be tuned to much lower elastic stresses than those predicted by UCMM.
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Table I. 36 Element mesh (M1).

Degrees of No. of
Order of space k p-level freedom I |gi|max iterations

2 5 3855 1:1615E− 01 7:44E− 07 10
7 8367 3:3270E− 02 3:40E− 07 8
9 14 607 1:3247E− 02 1:52E− 07 9

3 5 2485 6:6342E− 02 3:42E− 07 10
7 6277 5:0209E− 03 6:67E− 07 8
9 11 797 1:3737E− 03 6:18E− 07 7

4 7 4487 9:9169E− 03 9:67E− 07 13
9 9287 1:2148E− 03 3:54E− 07 7

Table II. 49 Element mesh (M3).

Degrees of No. of
Order of space k p-level freedom I |gi|max iterations

2 5 5167 1:3231E− 01 8:69E− 07 19
7 11 271 3:7144E− 02 8:53E− 07 15
9 19 727 1:4414E− 02 7:25E− 07 13

3 5 3271 1:4712E− 01 4:33E− 07 16
7 8367 1:5862E− 02 9:37E− 07 9
9 15 815 2:6362E− 03 9:86E− 07 8

4 7 5895 3:1904E− 02 8:88E− 07 20
9 11 335 1:7716E− 03 7:31E− 07 12

Table III. 100 Element mesh (M2).

Degrees of No. of
Order of space k p-level freedom I |gi|max iterations

2 5 10 255 1:1528E− 01 6:59E− 07 10
3 7 16 437 1:43692E− 03 8:25E− 07 7
4 9 24 071 1:9148E− 03 3:55E− 07 7

Table IV. 400 Element mesh (M4).

Degrees of No. of
Order of space k p-level freedom I |gi|max iterations

2 3 10 255 3.17615 9:03E− 07 39
5 39 625 4:5027E− 01 9:58E− 07 17

3 9 62 837 4:8174E− 03 6:92E− 07 11
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Figure 16. h, p, k independent solutions of class C2, p=7, at x=0:5: for Mesh M4 (400 Ele.)
hd=0:05, u0 = 0:2, De=0:2: (a) velocity u versus y; (b) shear stress �vxy versus y; (c) normal stress

�vxx versus y; and (d) normal stress �vyy versus y.
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Figure 17. h, p, k independent solutions of class C2, p=7, at x=0:5: for Mesh M4 (400 Ele.)
hd=0:05, u0 = 0:2, De=0:2: (a) velocity v versus y; (b) shear stress �exy versus y; (c) normal stress

�exx versus y; and (d) normal stress �eyy versus y.
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Figure 18. h, p, k independent solutions of class C2, p=7, at y=0:5: for Mesh M4 (400 Ele.)
hd=0:05, u0 = 0:2, De=0:2: (a) velocity u versus x; (b) shear stress �vxy versus x; (c) normal stress

�vxx versus x; and (d) normal stress �vyy versus x.
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Figure 19. h, p, k independent solutions of class C2, p=7, at y=0:5: for Mesh M4 (400 Ele.)
hd=0:05, u0 = 0:2, De=0:2: (a) velocity v versus x; (b) shear stress �exy versus x; (c) normal stress

�exx versus x; and (d) normal stress �eyy versus x.
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The Oldroyd-B model has a much bigger range of ˆ̇� than UCMM. Based on experimental
work reported in Reference [38], ˆ̇� of upto 3 would yield reasonable agreement between the
Oldroyd-B model and the experiments.

8.2.8. Discussion of results. Here we present a discussion of the results reported in Sections
8.2.1–8.2.7 for lid driven cavity for De=0:2 and 0:4 with hd=0:05 and 0:1.

(1) First, we note that h, p, k independence of the solutions for hd=0:1 and 0:05 are in
exceptionally good including the near vicinity of points A and B.

(2) The limit points for hd=0:1 and 0:05 also agree well with each other except in the
very close vicinity of points A and B.

(3) Thus, we have converged solutions that are independent of h; p and k except in the very
close neighbourhood of points A and B with changing hd. We believe, it is important
to discuss what these solutions mean in terms of correlation with experiments as well
as satisfying GDEs.

(4) Since the Oldroyd-B model is only good for dilute polymer solutions and its range
of validity established based on experiments [38] show that the model only produces
results with reasonable agreement with experiments for low values of ˆ̇� ( ˆ̇�63). Hence,
�rst thing we need to do is to examine ˆ̇� through out the cavity for various solutions.
Corresponding to the limit points for all four meshes, distributions of �̇ is shown
for x=0:5, y=0:95, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1. For L0 = 0:1, u0 = 0:2 and De=0:2
(Figures 20 and 21) we have �̇=1:5 (corresponding to the limiting value of ˆ̇�=3).
We observe that except in the small portion of the cavity far away from the lid, �̇
values far exceed the permissible value of �̇ for Oldroyd-B model. Conforming that the
numerical results reported here (though represent limit points) will not be in agreement
with the experiments. Similar graphs for De=0:4 are shown in Figures 22 and 23 with
behaviours similar to De=0:2 except that in this case due to higher Deborah number
and hence increased elasticity, only a relatively smaller portion of the cavity (compared
to De=0:2) shows permissible range of �̇.

(5) From Tables I–IV, we observe that inspite of attempts to re�ne the meshes, increas-
ing p-levels as well as increasing the order of the space, the least squares functional
(I) values remain in the range (10−1–10−2) indicating that the GDEs are not satis-
�ed accurately by these solutions in the point-wise sense. A closer examination of
the residuals resulting from the various equations indicate the constitutive equations
to have the highest residuals only in the vicinity of points A and B. Away from the
immediate neighbourhoods of points A and B, the GDEs satis�ed quite well (I e of
the order of (10−5) or lower). We note that in this model problem the �ow is fully
two-dimensional, i.e. all four velocity gradients exist and are non-zero in the inte-
rior of the cavity. Furthermore, the velocity gradients in the neighbourhood of the
points A and B are quite high (indicated by high values of �̇) where the Oldroyd-B
model is not valid. High values of I e (element residuals) in such areas indicates that
the computed solutions does not satisfy the GDEs with high precision (accurately).
From the considerations of the equilibrium of a �uid control volume one could show
that non-zero �eyy is essential for its equilibrium which the Oldroyd-B model cannot
produce in a manner that is consistent with the correct physics of two-dimensional
elasticity.
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Figure 20. Strain rate at di�erent y locations, for hd=0:1 and 0.05, C3, p=9, De=0:2, �2 = 0:05:
(Note: the dotted line represents the theoretical limit of �̇=1:5 for this model.) (a) strain rate �̇ at
x=0:5; (b) strain rate �̇ at y=0:95; (c) strain rate �̇ at y=0:75; and (d) strain rate �̇ at y=0:5.
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Figure 21. Strain rate at di�erent y locations, for hd=0:1 and 0.05, C3, p=9, De=0:2, �2 = 0:05:
(Note: the dotted line represents the theoretical limit of �̇=1:5 for this model.) (a) strain rate �̇ at
y=0:4: (b) strain rate �̇ at y=0:3; (c) strain rate �̇ at y=0:2; and (d) strain rate �̇ at y=0:1.
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Figure 22. Strain rate at di�erent y locations, for hd=0:1 and 0.05, C3, p=9, De=0:4, �2 = 0:05:
(Note: the dotted line represents the theoretical limit of �̇=0:75 for this model.) (a) strain rate �̇
at x=0:5; (b) strain rate �̇ at y=0:95; (c) strain rate �̇ at y=0:75; and (d) strain rate �̇ at y=0:5.
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Figure 23. Strain rate at di�erent y locations, for hd=0:1 and 0.05, C3, p=9, De=0:4, �2 = 0:05:
(Note: the dotted line represents the theoretical limit of �̇=0:75 for this model.) (a) strain rate �̇
at y=0:4; (b) strain rate �̇ at y=0:3; (c) strain rate �̇ at y=0:2; and (d) strain rate �̇ at y=0:1.
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(6) As Deborah number is increased from 0.2 to 0.4, the spuriousness in the solution in the
neighbourhood of points A and B grows and the size of its domain increases as well.
For Deborah numbers greater than 0.4 the size of the domain of spurious solution will
progressively increase, eventually contaminating the solution in the entire cavity and
resulting in the failure of computations (failure of Newton’s method with line search).
It is for this reason that computations beyond De=0:4 are not reported as they are
meaningless due to: (a) extremely high values of �̇ than permissible for the Oldroyd-B
model; (b) lack of the physics of two-dimensional elasticity which leads to erroneous
solutions specially in the areas of high �̇. It is worth remarking regarding the robust-
ness of the proposed computational framework. Even though in the numerical studies
for both values of De number Oldroyd-B model is spurious due to shear rates well
beyond its range of validity but, the proposed approach permits computations that try
to satisfy GDE.

(7) Studies were also conducted for GDEs in u, v, p, �e. These studies show no bene�ts
over GDEs in u, v, p, � and hence not reported here.

9. SUMMARY AND CONCLUSIONS

In this paper, the new mathematical framework presented by Surana et al. [25–27] based on
h, p, k and variational consistency of the integral forms is utilized to develop a �nite element
computational process for 2-D steady polymer �ows utilizing Oldroyd-B constitutive model.
In the following, we present a summary of the work and draw some conclusions.

(1) First, the choice of dependent variables in the GDEs is discussed. While, there are
many alternatives possible, it is shown that the mathematical characteristics of the
computational process remain una�ected by these choices due to the fact that GDEs
remain non-linear, thus Galerkin method with weak form remain VIC where as LSP
always yield VC integral forms regardless of the nature of non-linear partial di�erential
equations. We argue that a most prudent choice is one that yields most simpli�ed form
of the GDEs that are free of redundancies and inconsistencies. Using u, v, p, � (total
stress) as dependent variables yields GDEs that are in the strong from and conform
to these guidelines and hence are the form of the GDEs of choice.

(2) The GDEs in u, v, p and � are a set of non-linear partial di�erential equations.
We remark, that other choices of dependent variables also lead to sets of non-linear
partial di�erential equations. Following Surana et al. [25–27], the �nite element pro-
cesses based on Galerkin method and Galerkin method with weak from are VIC.
The coe�cient matrices in both processes are non-symmetric and hence may lead to
partial or completely complex basis and thus resulting computational processes may
yield spurious solutions [33, 34]. Since the VC of the VIC integral forms cannot be
restored through any justi�able mathematical means, these computational processes al-
ways have possibility of spuriousness and failure regardless of the choice of dependent
variables.

(3) The elastic-viscous stress decompositions yielding GDEs in u, v, p, and �e are also a
system of non-linear partial di�erential equations in which the coe�cient matrices are
non-symmetric for both Galerkin and Galerkin method with weak form. This choice
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of variables presents no special bene�ts in the proposed frame work based on h, p, k
requiring variationally consistent integral forms.

(4) It is shown that �nite element processes based on LSP utilizing strong form of
the GDEs in u, v, p, � are variationally consistent. The resulting coe�cient ma-
trices are always symmetric and hence always have a real basis and therefore the
resulting computational process is inherently non-spurious and unconditionally non-
degenerate.

(5) Minimally conforming spaces for local approximations are discussed. With u, v, p, �
as variables Hk;p( ��exy); k¿3 spaces in which k =3 is the minimally conforming space
are essential for continuity of the integrand in the integral forms. If we permit weak
convergence of the highest order derivatives (which is ok if the solutions are su�-
ciently smooth), then k=2 could be viewed as minimally conforming space. Need
for spaces of order higher than 3 is necessitated if one requires convergence of the
higher order derivatives of the computed solutions to their theoretical values. When
the theoretical solutions are not known, one obtains the limit points in various or-
der spaces (highest order space determined by the convergence of the highest or-
der derivatives desired) for di�erent discretizations to arrive at a solution that is the
limit point of the converging sequence of limit points and hence independent of h, p
and k.

(6) Numerical studies have been presented for: (i) fully developed �ow between parallel
plates and (ii) lid driven square cavity. Speci�c �ndings and conclusions are presented
in the following.

(7) For fully developed �ow between parallel plates, a �ve element uniform discretiza-
tion su�ces for De upto 314.96 and beyond. In this case numerical solutions are
possible for all values of ˆ̇� (beyond the range of validity for the Oldroyd-B model).
It is shown that due to equilibrium of elementary �uid volume in the absence of �̂eyy
computations are possible for virtually any �ow rate and hence for any ˆ̇�. �̂eyy=0 for
De �=0 is non-physical and is in contradiction with experimental evidence. When ˆ̇� is
small (63) �̂eyy is also small compared to �̂

e
xx and hence the �rst normal stress di�er-

ence (�̂exx − �̂eyy) is not e�ected signi�cantly even when �̂eyy=0 and thus for ˆ̇�63, the
results for Oldroyd-B model may be viewed acceptable. It is important to note that
for this simple case numerical simulations are possible even for those ˆ̇� values that
are well beyond the range of validity of Oldroyd-B model even though the computed
solutions are erroneous when compared with experiments. The reason for the success-
ful simulations of course is the fact that even when �̂eyy=0, �uid volume equilibrium
is possible. In two-dimensional �ows in which all velocity gradients are non-zero, �uid
volume equilibrium may force erroneous values of �̂eyy to be developed and thereby
contaminating the solution.

(8) Extensive numerical studies have been presented for the lid driven cavity. A valid
mechanism of incorporating the physics of boundary conditions at the points where
the stationary walls meet the lid is proposed when the local approximations are in
the higher order spaces. Numerical studies are presented for De=0:2 and 0.4. It is
shown that h, p, k independent solutions are possible for both Deborah numbers in
the entire cavity except in the local neighbourhood of the points A and B (where
the stationary wall meet the lid). Even at De=0:2, in the small neighbourhood of
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the points A and B solutions do not yield a limit point and the element residuals I e

remain relatively high indicating that the GDEs are not satis�ed accurately in these
regions. This local zone grows with increasing Deborah number. At De=0:4 this
zone is signi�cantly larger compared to De=0:2. Progressively increasing values of
De propagate this zone into progressively larger portion of the cavity and eventually
contaminate the solution in the whole cavity. Graphs of �̇ for De=0:2 and 0.4 clearly
show that only in relatively small portion of the cavity away from the moving lid
�̇ values are within the permissible range for Oldroyd-B model con�rming the lack
of validity of Oldroyd-B model for the majority of �ow domain of the cavity. How-
ever, excessively high values of �̇ alone are not responsible for the inability of the
simulations to yield limit points. Oldroyd-B model lacks physics of two-dimensional
elasticity and hence produces erroneous elastic stresses which contaminate all other
quantities as well. Increasing Deborah numbers result in increasing elastic stresses that
are erroneous and eventually result in total failure of the numerical simulation pro-
cess. Values of �̇ beyond the range of validity of the Oldroyd-B model accelerate the
generation of spurious solution due to the fact that high �̇ values correspond to high
velocity gradients and thus increased spurious elastic stresses which contaminate other
�ow quantities as well.

(9) As observed in the published literature, insistence to compute with Oldroyd-B model
for higher Deborah numbers is not meaningful when we know fully well that Oldroyd-
B model is only applicable for relatively low strain rates. For low values of ˆ̇� producing
low elastic stresses, one could perhaps tolerate the erroneous behaviour of the model
in the direction normal to the applied stress. However, for most practical problems
of interest such as cavity, sudden expansion, sudden contraction, stick-slip, etc. the
localized zones of high ˆ̇� is a reality. In such cases simulations using Oldroyd-B
model for �ow rates of practical interest: (i) may not be possible and (ii) even if
possible, are sure to yield erroneous results.

(10) It is signi�cant to note that, the mathematical framework and least squares computa-
tional process based on h, p, k utilized here is free of inherent and numerical di�u-
sion [40] and that the upwinding techniques such as SUPG, SUPG=DC, SUPG=DC=LS
and their many variations are neither needed nor used in the present work. Furthermore,
various methods such as elastic-viscous decomposition of stress, EEME, EEME=SUPG,
EVSS=SUPG, etc. though may show some bene�ts in Galerkin methods with weak
form, but are of little or no consequence in the present computational framework
due to the fact that regardless of the nature of GDEs, least squares processes are
always VC. Since, the GDEs are always non-linear, Galerkin method with weak form
is always VIC and hence the resulting computational processes always have the pos-
sibility of the spurious numerical solutions. The computations for any De �=0 are
undoubtedly erroneous due to the tact that the constitutive model fails to incorporate
correct physics of two-dimensional elasticity, hence computations for higher De are
of very little consequence. The failure of the computational process depends upon
the extent to which elastic stresses are erroneous and exceeding ˆ̇� beyond the range
of validity of the constitutive model, is certainly a major contributing factor in pro-
gressively erroneous computations for progressively increasing Deborah numbers and
eventual failure of the computations, i.e. lack of convergence of the Newton’s method
with line search.
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